Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The poor thermal stability of lactoferrin (LF) hinders its bioavailability and use in commercial food products. To preserve LF from thermal denaturation, complexation with other biopolymers has been studied. Here we present the complex formation conditions, structural stability, and functional protection of LF by α‐lactalbumin (α‐LA). The formation of the LF–α‐LA complexes was dependent on pH, mass ratio, and ionic strength. Changing the formation conditions and cross‐linking by transglutaminase impacted the turbidity, particle size, and zeta‐potential of the resulting complexes. Electrophoresis, Fourier‐transform infrared spectroscopy, and circular dichroism measurements suggest that the secondary structure of LF in the LF–α‐LA complex was maintained after complexation and subsequent thermal treatments. At pH 7, the LF–α‐LA complex protected LF from thermal aggregation and denaturation, and the LF retained its functional and structural properties, including antibacterial capacity of LF after thermal treatments. The improved thermal stability and functional properties of LF in the LF–α‐LA complex are of interest to the food industry.more » « less
-
Nicotinamide riboside chloride (NRCl) is an effective form of vitamin B3. However, it cannot be used in ready-to-drink (RTD) beverages or high-water activity foods because of its intrinsic instability in water. To address this issue, we synthesized nicotinamide riboside trioleate chloride (NRTOCl) as a new hydrophobic nicotinamide riboside (NR) derivative. Contrary to NRCl, NRTOCl is soluble in an oil phase. The results of stability studies showed that NRTOCl was much more stable than NRCl both in water and in oil-in-water emulsions at 25 °C and 35 °C. Finally, we evaluated the bioavailability of NRTOCl by studying its digestibility in simulated intestinal fluid. The results demonstrated that NRTOCl was partially digestible and released NR in the presence of porcine pancreatin in a simulated intestinal fluid. This study showed that NRTOCl has the potential to be used as an NR derivative in ready-to-drink (RTD) beverages and other foods and supplement applications.more » « less
An official website of the United States government
